Publication List English

EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch.

New photic stimulating system with white light-emitting diodes to elicit electroretinograms from zebrafish larvae.

Potential protective function of the sterol regulatory element binding factor 1-fatty acid desaturase 12 axis in early-stage age-related macular degeneration

Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

tRapid and stable buffer exchange system using InSitu Chip suitable for multicolor and large-scale whole-mount analyses.


Ogasawara M, Satoh N, Shimada Y, Wang Z, Tanaka T, Noji S.
Dev Genes Evol.:1-5 2005


Whole-mount in situ hybridization (WISH) and whole-mount immunohistochemistry (WIHC) are informative methods commonly used to analyze the spatiotemporal and quantitative distribution of mRNAs and proteins. However, these methods require multiple buffer changes and the imposition of time- and nerve-consuming efforts. To facilitate the whole-mount analyses, we innovated an easy and one-step buffer exchange system named "InSitu Chip" based on a single column containing two attached filters. This system improves the speed and stabilizes the different steps of the currently available protocols, providing fast and uniform operations. The InSitu Chip system is especially appropriate for multicolor whole-mount analyses using fluorescent detection. Furthermore, the InSitu Chip system is also suitable for large-scale whole-mount experiments associated with genome, transcriptome, and/or proteome analyses requiring high-throughput, high-quality, and reproducible results. Using the InSitu Chip, about 1,500 gene expression patterns were stably surveyed in ascidian Ciona intestinalis juveniles.

PMID: 16249872 [PubMed - indexed for MEDLINE]