Publication List English

2019/03/18
Zebrafish yolk sac microinjection of thalidomide for assessment of developmental toxicology

2019/02/18
Toxicological Evaluation of SiO2 Nanoparticles by Zebrafish Embryo Toxicity Test

2018/12/27
Increased susceptibility to oxidative stress-induced toxicological evaluation by genetically modified nrf2a-deficient zebrafish.

2018/01/18
EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

2017/11/23
Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch.

tEGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

                     
2018/01/18

Nature Communicationsvolume 9, Article number: 758 (2018)
doi:10.1038/s41467-018-03117-y

Kousuke Kasahara, Hiromasa Aoki, Tohru Kiyono, Shujie Wang, Harumi Kagiwada, Mizuki Yuge, Toshio Tanaka, Yuhei Nishimura, Akira Mizoguchi, Naoki Goshima & Masaki Inagaki

Abstract
Ciliogenesis is generally inhibited in dividing cells, however, it has been unclear which signaling cascades regulate the phenomenon. Here, we report that epidermal growth factor receptor (EGFR) kinase suppresses ciliogenesis by directly phosphorylating the deubiquitinase USP8 on Tyr-717 and Tyr-810 in RPE1 cells. These phosphorylations elevate the deubiquitinase activity, which then stabilizes the trichoplein-Aurora A pathway, an inhibitory mechanism of ciliogenesis. EGFR knockdown and serum starvation result in ciliogenesis through downregulation of the USP8-trichoplein-Aurora A signal. Moreover, primary cilia abrogation, which is induced upon IFT20 or Cep164 depletion, ameliorates the cell cycle arrest of EGFR knockdown cells. The present data reveal that the EGFR-USP8-trichoplein-Aurora A axis is a critical signaling cascade that restricts ciliogenesis in dividing cells, and functions to facilitate cell proliferation. We further show that usp8 knockout zebrafish develops ciliopathy-related phenotypes including cystic kidney, suggesting that USP8 is a regulator of ciliogenesis in vertebrates.

ŠΦ˜AƒŠƒ“ƒN

Nature Communications

PubMed