Publication List English

C3orf70 Is Involved in Neural and Neurobehavioral Development

Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation

Aging-associated microstructural deterioration of vertebra in zebrafish

Zebrafish yolk sac microinjection of thalidomide for assessment of developmental toxicology

Toxicological Evaluation of SiO2 Nanoparticles by Zebrafish Embryo Toxicity Test

tEffect of calmodulin inhibitors on thyroid hormone secretion.


Nakai A, Nagasaka A, Hidaka H, Tanaka T, Ohyama T, Iwase K, Ohtani S, Shinoda S, Aono T, Masunaga R, et al.
Endocrinology. 1986 Nov;119(5):2279-83.


The effect of calmodulin inhibitors, N-(6-aminohexyl)-5-chloro-1-naphthalene sulfonamide (W-7) and trifluoperazine, on TSH-induced thyroid hormone secretion from rat thyroid was examined in vivo and in vitro. The ip administration of 5 mg W-7 to the rat inhibited T4 and T3 secretion from rat thyroids at 2, 3, and 4 h after the ip injection of 2 IU TSH, and so did the ip injection of trifluoperazine at 3 and 4 h. However, the ip injection of N-(6-aminohexyl)-1-naphthalene sulfonamide as a control substance did not show any significant inhibition of T4 and T3 release. To identify the site of action of calmodulin, the effect of W-7 on (Bu)2cAMP-induced thyroid hormone secretion was tested in vitro. One hundred micromolar W-7 completely inhibited T4 release from the rat thyroid when it was enhanced by TSH or (Bu)2cAMP, suggesting that the inhibitory effect of W-7 is subsequent to cAMP formation. These results suggest that calmodulin may play a role in thyroid hormone secretion from the thyroid, acting beyond cAMP formation.