Publication List English

2019/03/18
Zebrafish yolk sac microinjection of thalidomide for assessment of developmental toxicology

2019/02/18
Toxicological Evaluation of SiO2 Nanoparticles by Zebrafish Embryo Toxicity Test

2018/12/27
Increased susceptibility to oxidative stress-induced toxicological evaluation by genetically modified nrf2a-deficient zebrafish.

2018/01/18
EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

2017/11/23
Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch.

tNovel immunologic tolerance of human cancer cell xenotransplants in zebrafish.

                     
2015/12/18

Transl Res. 2015 Dec 18. pii: S1931-5244(15)00449-1. doi: 10.1016/j.trsl.2015.12.007. [Epub ahead of print]

Novel immunologic tolerance of human cancer cell xenotransplants in zebrafish.
Zhang B, Shimada Y, Hirota T, Ariyoshi M, Kuroyanagi J, Nishimura Y, Tanaka T.

Abstract
Immune deficiency or suppression in host animals is an essential precondition for the success of cancer cell xenotransplantation because the host immune system has a tendency to reject implanted cells. However, in such animals, the typical tumor microenvironment seen in cancer subjects does not form because of the lack of normal immunity. Here, we developed a novel zebrafish (Danio rerio) model based on 2 rounds of cancer cell xenotransplantation that achieved cancer-specific immunologic tolerance without immunosuppression. We irradiated human cancer cells (PC-3, K562 and HepG2) to abolish their proliferative abilities and implanted them into zebrafish larvae. These cells survived for 2 weeks in the developing host. Three months after the first implantation, the zebrafish were implanted with the same, but nonirradiated, cell lines. These cancer cells proliferated and exhibited metastasis without immune suppression. To reveal the transcriptional mechanism of this immune tolerance, we conducted dual RNA-seq of the tumor with its surrounding tissues and identified several regulatory zebrafish genes that are involved in immunity; the expression of plasminogen activator, urokinase, and forkhead box P3 was altered in response to immunologic tolerance. In conclusion, this xenograft method has potential as a platform for zebrafish-based anticancer drug discovery because it can closely mimic human clinical cancers without inducing immune suppression.

Šึ˜AƒŠƒ“ƒN

Elsevier Science

PubMed