Publication List English

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline.

2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741

2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis

2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine

2021/07/09
Quality Control Protocol for Zebrafish Developmental Toxicity Studies

tDifferential effects of flavonoids as inhibitors of tyrosine protein kinases and serine /threonine protein kinases.

                     
1988/08/01

Hagiwara M, Inoue S, Tanaka T, Nunoki K, Ito M, Hidaka H.
Biochem Pharmacol. 1988 Aug 1;37(15):2987-92.

Abstract

The inhibitory potencies of bioflavonoids on various tyrosine protein kinases and serine/threonine protein kinases were investigated. The phosphotransferase activity of an oncogene product, pp130fps, and a growth factor receptor, insulin receptor, were inhibited by myricetin, a derivative of quercetin. However, tyrosine kinase activity in the particulate fraction from human platelets (PM-TPK) was resistant to myricetin. Apparent Ki values of myricetin for tyrosine protein kinases of pp130fps and insulin receptor were 1.8 and 2.6 microM, respectively. The Ki values for serine/threonine kinase activities of myosin light chain kinase (MLC-kinase), casein kinase I, casein kinase II, cAMP-dependent protein kinase, and protein kinase C were 1.7 microM, 9.0 microM, 0.6 microM, 27.5 microM, and 12.1 microM, respectively. Lineweaver-Burk plots revealed that myricetin competitively inhibits pp130fps tyrosine kinase, myosin light chain kinase, casein kinase I and II with ATP, but does not inhibit other protein kinases. Since myricetin is a hydroxylated derivative of quercetin, the inhibitory effects of a series of seven flavonoids with various numbers of hydroxy residues were examined. Structure activity studies exhibited that the inhibitory potencies of the flavonoids for tyrosine kinases of pp130fps and insulin receptor correlated with the number of hydroxy residues on the flavone rings (gamma = 0.974 and 0.926, respectively), whereas the hydroxylation influenced to a lesser extent the inhibitory potencies for serine/threonine protein kinase. The hydroxy residues at position 3' and 5' did not affect the activities of cAMP-dependent protein kinase, and protein kinase C, and the hydroxylation at position 5' is detrimental for the inhibition of MLC-kinase, and casein kinase I and II. Thus, flavonoids may be useful tools to elucidate the active site of tyrosine and serine/threonine protein kinases.

ŠΦ˜AƒŠƒ“ƒN

Pubmed