Publication List English

2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis

2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine

2021/07/09
Quality Control Protocol for Zebrafish Developmental Toxicity Studies

2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish

2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis

tIn vivo imaging of the mouse neurovascular unit under chronic cerebral hypoperfusion.

                     
2014/11/04

Stroke. 2014 Dec;45(12):3698-703.
doi: 10.1161/STROKEAHA.114.005891.
Epub 2014 Nov 4.

In vivo imaging of the mouse neurovascular unit under chronic cerebral hypoperfusion.

Yata K, Nishimura Y, Unekawa M, Tomita Y, Suzuki N, Tanaka T, Mizoguchi A, Tomimoto H.

From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.).

Abstract

BACKGROUND AND PURPOSE: Proper brain function is maintained by an integrated system called the neurovascular unit (NVU) comprised cellular and acellular elements. Although the individual features of specific neurovascular components are understood, it is unknown how they respond to ischemic stress as a functional unit. Therefore, we established an in vivo imaging method and clarified the NVU response to chronic cerebral hypoperfusion.

METHODS: Green mice (b-act-EGFP) with SR101 plasma labeling were used in this experiment. A closed cranial window was made over the left somatosensory cortex. To mimic chronic cerebral hypoperfusion, mice were subjected to bilateral common carotid artery stenosis operations using microcoils. In vivo real-time imaging was performed using 2-photon laser-scanning microscopy during the preoperative period, and after 1 day and 1 and 2 weeks of bilateral common carotid artery stenosis or sham operations.

RESULTS: Our method allowed 3-dimensional observation of most of the components of the NVU, as well as dynamic capillary microcirculation. Under chronic cerebral hypoperfusion, we did not detect any structural changes of each cellular component in the NVU; however, impairment of microcirculation was detected over a prolonged period. In the pial small arteries and veins, rolling and adhesion of leukocyte were detected, more prominently in the latter. In the deep cortical capillaries, flow stagnation because of leukocyte plugging was frequently observed.

CONCLUSIONS: We established an in vivo imaging method for real-time visualization of the NVU. It seems that under chronic cerebral hypoperfusion, leukocyte activation has a critical role in microcirculation disturbance.

ŠΦ˜AƒŠƒ“ƒN

NCBI

Stroke