Publication List English

EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch.

New photic stimulating system with white light-emitting diodes to elicit electroretinograms from zebrafish larvae.

Potential protective function of the sterol regulatory element binding factor 1-fatty acid desaturase 12 axis in early-stage age-related macular degeneration

Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

tIn vivo imaging of the mouse neurovascular unit under chronic cerebral hypoperfusion.


Stroke. 2014 Dec;45(12):3698-703.
doi: 10.1161/STROKEAHA.114.005891.
Epub 2014 Nov 4.

In vivo imaging of the mouse neurovascular unit under chronic cerebral hypoperfusion.

Yata K, Nishimura Y, Unekawa M, Tomita Y, Suzuki N, Tanaka T, Mizoguchi A, Tomimoto H.

From the Department of Neurology (K.Y., H.T.), Department of Molecular and Cellular Pharmacology, Pharmacogenomics and Pharmacoinformatics (Y.N., T.T.), and Department of Neural Regeneration and Cell Communication (A.M.), Mie University Graduate School of Medicine, Tsu, Mie, Japan; and Department of Neurology, Keio University School of Medicine, Shinjuku, Tokyo, Japan (M.U., Y.T., N.S.).


BACKGROUND AND PURPOSE: Proper brain function is maintained by an integrated system called the neurovascular unit (NVU) comprised cellular and acellular elements. Although the individual features of specific neurovascular components are understood, it is unknown how they respond to ischemic stress as a functional unit. Therefore, we established an in vivo imaging method and clarified the NVU response to chronic cerebral hypoperfusion.

METHODS: Green mice (b-act-EGFP) with SR101 plasma labeling were used in this experiment. A closed cranial window was made over the left somatosensory cortex. To mimic chronic cerebral hypoperfusion, mice were subjected to bilateral common carotid artery stenosis operations using microcoils. In vivo real-time imaging was performed using 2-photon laser-scanning microscopy during the preoperative period, and after 1 day and 1 and 2 weeks of bilateral common carotid artery stenosis or sham operations.

RESULTS: Our method allowed 3-dimensional observation of most of the components of the NVU, as well as dynamic capillary microcirculation. Under chronic cerebral hypoperfusion, we did not detect any structural changes of each cellular component in the NVU; however, impairment of microcirculation was detected over a prolonged period. In the pial small arteries and veins, rolling and adhesion of leukocyte were detected, more prominently in the latter. In the deep cortical capillaries, flow stagnation because of leukocyte plugging was frequently observed.

CONCLUSIONS: We established an in vivo imaging method for real-time visualization of the NVU. It seems that under chronic cerebral hypoperfusion, leukocyte activation has a critical role in microcirculation disturbance.