Publication List English

2019/03/18
Zebrafish yolk sac microinjection of thalidomide for assessment of developmental toxicology

2019/02/18
Toxicological Evaluation of SiO2 Nanoparticles by Zebrafish Embryo Toxicity Test

2018/12/27
Increased susceptibility to oxidative stress-induced toxicological evaluation by genetically modified nrf2a-deficient zebrafish.

2018/01/18
EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

2017/11/23
Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch.

tZebrafish as a systems toxicology model for developmental neurotoxicity testing.

                     
2014/09/01

Zebrafish as a systems toxicology model for developmental neurotoxicity testing.

Congenit Anom (Kyoto). 2014 Sep 1.
doi: 10.1111/cga.12080.

Nishimura Y1, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T.

The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments.

ŠΦ˜AƒŠƒ“ƒN

Congenital Anomalies

NCBI