Publication List English

2025/10/31
Zebrafish Xenograft Model for Predicting Cisplatin Efficacy in Muscle-Invasive Bladder Cancer

2025/10/16
AI-Driven Image Analysis for Precision Screening Transposon-Mediated Transgenesis of NFƒΘB eGFP Reporter System in Zebrafish

2025/08/06
Variation and classification of chemically-induced zebrafish malformations for the ICH S5 (R3) guideline: an atlas for zebrafish teratogenesis

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline

2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741

tZebrafish as a systems toxicology model for developmental neurotoxicity testing.

                     
2014/09/01

Zebrafish as a systems toxicology model for developmental neurotoxicity testing.

Congenit Anom (Kyoto). 2014 Sep 1.
doi: 10.1111/cga.12080.

Nishimura Y1, Murakami S, Ashikawa Y, Sasagawa S, Umemoto N, Shimada Y, Tanaka T.

The developing brain is extremely sensitive to many chemicals. Exposure to neurotoxicants during development has been implicated in various neuropsychiatric and neurological disorders, including autism spectrum disorder, attention deficit hyperactive disorder, schizophrenia, Parkinson's disease, and Alzheimer's disease. Although rodents have been widely used for developmental neurotoxicity testing, experiments using large numbers of rodents are time-consuming, expensive, and raise ethical concerns. Using alternative non-mammalian animal models may relieve some of these pressures by allowing testing of large numbers of subjects while reducing expenses and minimizing the use of mammalian subjects. In this review, we discuss some of the advantages of using zebrafish in developmental neurotoxicity testing, focusing on central nervous system development, neurobehavior, toxicokinetics, and toxicodynamics in this species. We also describe some important examples of developmental neurotoxicity testing using zebrafish combined with gene expression profiling, neuroimaging, or neurobehavioral assessment. Zebrafish may be a systems toxicology model that has the potential to reveal the pathways of developmental neurotoxicity and to provide a sound basis for human risk assessments.

ŠΦ˜AƒŠƒ“ƒN

Congenital Anomalies

NCBI