Publication List English

2025/10/31
Zebrafish Xenograft Model for Predicting Cisplatin Efficacy in Muscle-Invasive Bladder Cancer

2025/10/16
AI-Driven Image Analysis for Precision Screening Transposon-Mediated Transgenesis of NFƒΘB eGFP Reporter System in Zebrafish

2025/08/06
Variation and classification of chemically-induced zebrafish malformations for the ICH S5 (R3) guideline: an atlas for zebrafish teratogenesis

2024/08/06
Validation of a new protocol for a zebrafish MEFL (malformation or embryo-fetal lethality) test method that conforms to the ICH S5 (R3) guideline

2024/05/21
In vivo assessment of individual and total proteinuria in zebrafish larvae using the solvatochromic compound ZMB741

tCardiac sarcoplasmic reticulum chloride channels regulated by protein kinase A.

                     
1992/09/01

Kawano S, Nakamura F, Tanaka T, Hiraoka M.
Circ Res. 1992 Sep;71(3):585-9.

Abstract

In heart cells, several plasma membrane ion channels are targets for phosphorylation. However, it is not known whether sarcoplasmic reticulum (SR) ion channels, which are also essential in the regulation of cardiac function, are regulated by second-messenger systems. Here, we show that a Cl- channel in the cardiac SR membrane is activated by the catalytic subunit of protein kinase A (PKA). Purified cardiac heavy SR vesicles were incorporated into planar lipid bilayers. This channel spontaneously inactivated within a few minutes after the channel was incorporated into the bilayer. Mg-ATP (2-5 mM), but not the nonhydrolyzable ATP analogue 5'-adenylylimidodiphosphate, added to the cis solution prevented this spontaneous channel inactivation. After the inactivation process occurred, the catalytic subunit of PKA (with 0.05 mM Mg-ATP) reactivated this channel. These effects of Mg-ATP and PKA on the Cl- channel were prevented by an inhibitor of PKA. Thus, these results suggest that this SR Cl- channel is a novel target of PKA-dependent phosphorylation in cardiac muscle regulation.

ŠΦ˜AƒŠƒ“ƒN

Pubmed