Publication List English

2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis

2019/10/15
C3orf70 Is Involved in Neural and Neurobehavioral Development

2019/09/22
Generation of a Triple-Transgenic Zebrafish Line for Assessment of Developmental Neurotoxicity during Neuronal Differentiation

2019/07/17
Aging-associated microstructural deterioration of vertebra in zebrafish

2019/03/18
Zebrafish yolk sac microinjection of thalidomide for assessment of developmental toxicology

tA Calponin Peptide Enhances Ca2+ Sensivity of Smooth Muscle Contraction without Affecting Myosin Light Chain Phosphorylation

                     
1995/09/01

Itoh T, Suzuki A, Watanabe Y, Mino T, Naka M, Tanaka T.
J Biol Chem. 1995 Sep 1;270(35):20400-3.

Abstract

In permeabilized smooth muscle, exogenously applied calponin binds to myofibrils and reduces Ca(2+)-activated tension (Itoh, T., Suzuki, S., Suzuki, A., Nakamura, F., Naka, M., and Tanaka, T. (1994) Pflügers Arch. Eur. J. Physiol. 427, 301-308). A calponin peptide (calponin Phe173-Arg185), which inhibits the binding of calponin to actin, blocks the action of calponin and enhances the contraction induced by submaximal Ca2+ in permeabilized vascular smooth muscle. Unlike calmodulin, this peptide enhances the Ca(2+)-induced contraction without a corresponding increase in the level of myosin light chain phosphorylation. These results suggest that calponin decreases the sensitivity of smooth muscle to Ca2+ at a given level of myosin light chain phosphorylation.

ŠΦ˜AƒŠƒ“ƒN

Pubmed