Publication List English

2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis

2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine

2021/07/09
Quality Control Protocol for Zebrafish Developmental Toxicity Studies

2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish

2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis

tA Calponin Peptide Enhances Ca2+ Sensivity of Smooth Muscle Contraction without Affecting Myosin Light Chain Phosphorylation

                     
1995/09/01

Itoh T, Suzuki A, Watanabe Y, Mino T, Naka M, Tanaka T.
J Biol Chem. 1995 Sep 1;270(35):20400-3.

Abstract

In permeabilized smooth muscle, exogenously applied calponin binds to myofibrils and reduces Ca(2+)-activated tension (Itoh, T., Suzuki, S., Suzuki, A., Nakamura, F., Naka, M., and Tanaka, T. (1994) Pflügers Arch. Eur. J. Physiol. 427, 301-308). A calponin peptide (calponin Phe173-Arg185), which inhibits the binding of calponin to actin, blocks the action of calponin and enhances the contraction induced by submaximal Ca2+ in permeabilized vascular smooth muscle. Unlike calmodulin, this peptide enhances the Ca(2+)-induced contraction without a corresponding increase in the level of myosin light chain phosphorylation. These results suggest that calponin decreases the sensitivity of smooth muscle to Ca2+ at a given level of myosin light chain phosphorylation.

ŠΦ˜AƒŠƒ“ƒN

Pubmed