Publication List English

EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch.

New photic stimulating system with white light-emitting diodes to elicit electroretinograms from zebrafish larvae.

Potential protective function of the sterol regulatory element binding factor 1-fatty acid desaturase 12 axis in early-stage age-related macular degeneration

Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

tCalcium-dependent Activation of NFIL3/E4BP4 Gene Expression by Calcineurin/NFAT and CaM kinase Signaling.


J.Biol. Chem.276(23)19921-19928 2001


An increase in the intracellular Ca(2+) concentration controls a diverse range of cell functions, including gene expression, apoptosis, adhesion, motility, and proliferation. We have investigated Ca(2+) regulation of gene expression in rat aortic smooth muscle cells. We found that the expression of nuclear factor regulated by interleukin 3 (NFIL3)/adenovirus E4 promoter-binding protein (E4BP4)/basic region/leucine zipper (bZIP) type of a transcription factor that has a very important function in cell survival, was activated by thapsigargin (TG). This activation was inhibited by chelation of extra- or intracellular Ca(2+), suggesting that the induction by TG was dependent on the elevation of [Ca(2+)](i). Specific inhibition of calcineurin or calcium/calmodulin-dependent protein kinase (CaM kinase) by chemical means impaired the TG-induced NFIL3/E4BP4 expression. Expression of dominant negative forms of calcineurin or nuclear factor of activated T cells (NFAT) inhibited the induction of NFIL3/E4BP4 mRNA by TG. These results suggest that intracellular Ca(2+) plays a critical role in regulating gene expression of NFIL3/E4BP4 by calcineurin/NFAT and CaM kinase signaling in vascular smooth muscle cells.