Publication List English

New photic stimulating system with white light-emitting diodes to elicit electroretinograms from zebrafish larvae.

Potential protective function of the sterol regulatory element binding factor 1-fatty acid desaturase 12 axis in early-stage age-related macular degeneration

Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

Downregulation of GSTK1 Is a Common Mechanism Underlying Hypertrophic Cardiomyopathy

Comparative Transcriptome Analysis Identifies CCDC80 as a Novel Gene Associated with Pulmonary Arterial Hypertension

tCalcium-dependent hydrophobic chromatography of calmodulin, S-100 protein and troponin-C.


Biochim Biophys Acta. 1984 Jun 14;787(2):158-64.

Calcium-dependent hydrophobic chromatography of calmodulin, S-100 protein and troponin-C.

Tanaka T, Umekawa H, Ohmura T, Hidaka H.


We have demonstrated calcium-dependent hydrophobic interactions among calmodulin, S-100 protein and troponin-C and a homologous series of omega-aminoalkyl-agaroses. The three Ca2+-binding proteins were retained on the column of agarose substituted with omega- aminooctyl or even longer with alkylamine, in the presence of Ca2+ and 0.15 M NaCl. As these proteins were not retained on the column with shorter alkylamine 'arms' (N = 2, 4), they are probably successively absorbed with a higher affinity to the hydrophobic agarose column. Calmodulin and S-100 protein were eluted from the aminoocytl -agarose column with 1 mM EGTA in the presence of 0.15 M NaCl and the elution of troponin-C was Ca2+-independently carried out with 0.3 M NaCl. On the other hand, S-100 and troponin-C were eluted Ca2+-dependently from aminodecyl -agarose in the presence of 1 M NaCl and half the amount of the calmodulin applied was eluted with 1 M NaCl. As there are obvious differences among the three Ca2+-binding proteins with regard to chromatographic behavior on omega-aminoalkyl-agarose columns, our results suggest that these three proteins expose different hydrophobic regions following Ca2+-induced conformational changes and, if so, such would explain the interaction with aminoalkyl-agaroses.

PMID: 6733116 [PubMed - indexed for MEDLINE]