Publication List English

EGF receptor kinase suppresses ciliogenesis through activation of USP8 deubiquitinase

Chemokines protect vascular smooth muscle cells from cell death induced by cyclic mechanical stretch.

New photic stimulating system with white light-emitting diodes to elicit electroretinograms from zebrafish larvae.

Potential protective function of the sterol regulatory element binding factor 1-fatty acid desaturase 12 axis in early-stage age-related macular degeneration

Activation of Sterol Regulatory Element Binding Factors by Fenofibrate and Gemfibrozil Stimulates Myelination in Zebrafish

tN-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide, a novel activator of protein kinase C.


Ito M, Tanaka T, Inagaki M, Nakanishi K, Hidaka H.
Biochemistry. 1986 Jul 29;25(15):4179-84.


Naphthalenesulfonamide derivatives were used to study the mechanism of regulation of Ca2+-dependent smooth muscle myosin light chain phosphorylation catalyzed by Ca2+-activated, phospholipid-dependent protein kinase (protein kinase C) and myosin light chain kinase. Derivatives such as N-(6-phenylhexyl)-5-chloro-1-naphthalenesulfonamide (SC-9), with a hydrophobic residue at the end of a hydrocarbon chain, stimulated Ca2+-activated, phospholipid-dependent myosin light chain phosphorylation in a Ca2+-dependent fashion. There was no significant effect of these compounds on Ca2+-calmodulin (CaM) dependent myosin light chain phosphorylation. On the other hand, derivatives with the guanidino or amino residue at the same position had an inhibitory effect on both Ca2+-phospholipid- and Ca2+-CaM-dependent myosin light chain phosphorylation. These observations suggest that activation of Ca2+-activated, phospholipid-dependent myosin light chain phosphorylation by naphthalenesulfonamide derivatives depends on the chemical structure at the end of hydrocarbon chain of each compound. SC-9 was similar to phosphatidylserine with regard to activation, and the apparent Km values for Ca2+ of the enzyme with this compound and phosphatidylserine were 40 microM and 80 microM, respectively. Kinetic analysis indicated that 12-O-tetradecanoylphorbol 13-acetate increased the affinity of the enzyme with SC-9 for calcium ion. However, kinetic constants revealed that the Km value of protein kinase C activated by SC-9 for substrate myosin light chain was 5.8 microM, that is, about 10 times lower than that of the enzyme with phosphatidylserine, and that the Vmax value with SC-9 was 0.13 nmol X min-1, that is, 3-fold smaller than that seen with phosphatidylserine.(ABSTRACT TRUNCATED AT 250 WORDS)