Publication List English

2021/10/31
Generation of a Transgenic Zebrafish Line for In Vivo Assessment of Hepatic Apoptosis

2021/08/19
Patient-Derived Cancer Xenograft Zebrafish Model (PDXZ) for Drug Discovery Screening and Personalized Medicine

2021/07/09
Quality Control Protocol for Zebrafish Developmental Toxicity Studies

2020/10/13
Gap junction protein beta 4 plays an important role in cardiac function in humans, rodents, and zebrafish

2020/05/28
A novel orexin antagonist from a natural plant was discovered using zebrafish behavioural analysis

tE2F4 Promotes Neuronal Regeneration and Functional Recovery after Spinal Cord Injury in Zebrafish

                     
2016/04/22

Front Pharmacol. 2016 May 9;7:119. doi: 10.3389/fphar.2016.00119. eCollection 2016.

Shota Sasagawa, Yuhei Nishimura, Yuka Hayakawa, Soichiro Murakami, Yoshifumi Ashikawa, Mizuki Yuge, Shiko Okabe, Koki Kawaguchi, Reiko Kawase and Toshio Tanaka

Mammals exhibit poor recovery after spinal cord injury (SCI), whereas non-mammalian vertebrates exhibit significant spontaneous recovery after SCI. The mechanisms underlying this difference have not been fully elucidated; therefore, the purpose of this study was to investigate these mechanisms. Using comparative transcriptome analysis, we demonstrated that genes related to cell cycle were significantly enriched in the genes specifically dysregulated in zebrafish SCI. Most of the cell cycle-related genes dysregulated in zebrafish SCI were down-regulated, possibly through activation of e2f4. Using a larval zebrafish model of SCI, we demonstrated that the recovery of locomotive function and neuronal regeneration after SCI were significantly inhibited in zebrafish treated with an E2F4 inhibitor. These results suggest that activation of e2f4 after SCI may be responsible, at least in part, for the significant recovery in zebrafish. This provides novel insight into the lack of recovery after SCI in mammals and informs potential therapeutic strategies.

ŠΦ˜AƒŠƒ“ƒN

Frontiers

PubMed